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1. Introduction.

The main objective of the present note is to solve a problem proposed

by Weide (1978) concerning the complete convergence of certain random

variables associated with Karp's probabilistic analysis of the traveling

salesman problem (Karp (1976), (1977)).

To set the problem precisely let X 1, 1 < I < -, be independent

random variables uniformly distributed on the unit square [0,1] 2, and

let T. denote the length of the shortest path (in the usual Euclidean

distance) which connects each element of (XIX2,...,Xnl.

It was proved by Beardwood, Halton, and Hammersley (1959) that

lim T/,n/ 0
n-on -0 CO

with probability one for a finite constant 0. This fact was central to

the motivation behind Karp's algorithm, but as Weide (1978) points out

the Karp algorithm actually calls for the following stronger result to

be proved here:

Theorem 1. There is a constant 0 such that for all E >0, one has

P( I Tn /V- I > ;)< •
~n=l

This type of convergence is usually called complete convergence, and

Theorem 1 stands in a similar relation to the Beardwood, Halton, Hiersley
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Theorem as the Hsu-Robbins Theorem stands in relation to the strong law

of large numbers (Lukacs (1968), Hsu and Robbins (1947)). The "easy-half'

of the Borel-Cantelli lemma shows that Theorem 1 implies the Beardwood-

Halton-Hammersley Theorem and the "hard-half" of the Borel-Cantelli lemma

shows how Theorem 1 is necessary in modeling contexts mhere problems of

increased size are generated independently of previous problems. (For a

full discussion of independent versus incrementing models for random

&problems one should consult Weide (1978)).

The proof of Theorem 1 is given in the next section and depends upon

shapening a subadditivity argument which has been useful in more general

contexts (Steele (1979)). The third section discusses a generalization

of Theorem 1.

2. Proof of Theorem 1.

Let N = N(t) denote a Poisson counting process with constant growth

rate 1. Also, for any Ac [O,112 let Tt(A) denote the length of the

shortest path through the points A n [ , ,X2 ... ,XN(t)). The method of

proof rest upon developing recursions for the functions

E2 2 ( 21/2 2

--~) = ETt([0,1] ), *(t) = (E Tt([O,1]a)) , and V(t) = *(t)-p2 (t).

First one notes the following:

Lemma 1. There is a constant c such that for any set 2 c [0,1] with

n elements there is a path of length no greater than crn through A.

This lema is easeily proved, but for a proof which yields a good

value of c one can consult Few (1955).
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Now let

1 21 2
S = Tt(EO,1] )+T (('1 2 )+ Tt([11>X [0,1)+ T ([.,Ix [O(,1]

and note by elementary geometry that Tt([O,11 2 ) :_ s +4. By well-known

properties of the planar Fbisson process one has that the four summands

of S are independent and identically distributed. By scaling one

also notes E Tt([Oq]2)= q(t/4) and (E tO,2))/2 (t/4).

Thus, taking expectations of (S+4) 2 one has

2 22
(2.1) i,(t) < 2(t/4) +3 p (t/4) +16 q(t/4) + 16

To simplify (2.1) let * 1 (t) : *(t2), ql(t) = q(t 2), and V(t) V(t )

and note that (2.1) implies

*41 (2t) <j 4(t + 3 9,(t) + 16 cp1(t) + 16

which entails

V, v(2t) < V,(t) + 14 q),(t) - CPF(2t) + 16 (p (t) + 16

and dividing by (2t)2 ,

(2.2) Vl(2t)/(2t)2 - (1/4)V (t)/t 2 <,p2 (t)/t2 -q 2(t)/(2t) 2 +4( (t)+l)/t 2

Applying (2.2) successively to t,2t,2 2t,...,2 Mit and sum.ming yields

I I III IIII I I I I " " ' ' ". . . .. .. . ' -' '"



M M-1 k2
r vl(2kt)/(2kt)

2  I v, (2't)/ (2t)

k~ l t)/t k=OM- 
1 -2k -.2

k=O

and consequently

)2 < 4 22 2 2/t~~~(2.3) V, V(2kt)/l2kt 2 <_ ((t)t2+8(It2+ (t)+)It 21 < .
k=l

In terms of V(t), (2.3) becomes for u = t2

00

(2.4) E v(,u)/( ku) <
k--O

Now by Beardwood-Halton-Hammeruley and dominated convergence theorems we have

(4 k)/( 4 ku) I /2 -* as k w. Hence by (2.4) and Chebyhev's inequality,

(2.5) T P(IT, ([0,]12 )/(4 1u)/21 > E) <
k=O 4

Now for all n > 4P  there is a 4!P +I > > 4P such that 4km < n < kk(m+i)

for some k > 0. Hence by Boole's inequality and the monotonicity of

Tt[O,l I

(2.6) P(lir ([o,12)/"l/2"pl > E)
nO n

, (P+ 1 )1/2)

< E E'_ P(T k ) + )( )'I
k=l m: iP
- k=1 4 K(51

00 4p+1  ~ /
+ E I P(Tk < (0-C) (k+ (,)12)

k=l m=P 4m



O 4p+1 )12 12

+ I E P(T (4k m < > ()( "P)  )

. 4p+1k 1/-1/2k=l m=4p 4m

By choosing p, one can guarantee that (1+4P)'i/2 (P+e) > 0 and

(1+r'P)(A-e) < 0 so (2.5) insures that the last two sums in (2.6)

converge, so

00

(2.7) E1 I(IT ((0, 112)Irj12_I E ) < •
n--O n

To obtain Theorem 1 from (2.7) we note that

(2.8) P(ITn(O,112 ) /2 0[ > C) rI- nn > c) n e

n rn-Mn
>0 p(%/J12 > p+e) •e -4n

-- - M!
m=rn

n m -

_+ I p(Pl n 12 < p-E)). n e-SM=O M.

S> P(T n/n 12 > B+e)(1) + P(T n/12 <-)( .

In the last inequality above one uses the fact that P(T > X) is

mnotone increasing, and the fact that n nme n/m ' and

m -nn
n -"e'/ml each exceed . The bounds (2-.7) and (2.8) complete

m< n

the proof of Theorem 1.
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3. Further Results.

In the previous section the aim was to give the most direct proof

possible of the result conjectured by Weide (1978). The complete conver-

gence proved there can easily be extended to the broader context of

subadditive Euclidean functionals. Since the method of proving complete

convergence in this context is directly parallel to the preceeding

argument, it is sufficient to state the more general result.

To introduce Euclidean functionals, let L denote a real value

function defined on the finite subsets d d > 2. It will be assumed

that L(XI,X 2,...,Xn) is measurable whenever Xi, 1 < i < n, are

measurable, and that the following four assumptions are satisfied:

Al. L(CXxl,ax2 ,...,Xn) = CL(xl,x2 ,...,xn) for a > 0

dA2. L(x1+t,x2 +t,...,xn4t) = L(x 1,x 2 ,...,x n ) for t E5 .

A3. L(xlx 2 ,...,xn,xn+1 ) > L(xl,x2,...,x n ) •

A4. Var(L(X1 ,X2 ,...,Xn)) < o when X are independent and

duniform on the unit cube [0,11

There is one further assumption which is needed and it is the only

one which is not trivial to verify in most applications.

Suppose that (S: 1 < i < mdI is the partition of [0,1]d into

sub-cubes of edge 1/m and let tQ, = (x: x=ty, y a l. The subadditivity

assumption is the following:

A5. There is a constant C > 0 such that for all positive integers

m and positive reals t one has

d

notId) m d-lL((XlX2,...,n n [O,t] d < L(fx ~2...,Ix) n}  Ult )+ tmd '

1xn tS)+Ctn

6



It is proved in Steele (1979) that if L satisfies the preceding

five assumptions and (Xi) are independent with a uniform distribution

in [0,1 ] d then

lira L(X(,X2,...X)/n (d-l)/d=

n-Xn

with probability one for some constant 0 < P < c_

One can easily check that the preceeding result implies the

Beardwood, Halton, Hammersley theorem. The main observation to be

made here is that this result also can be sharpened as in Section 2

to obtain the following:

Theorem 2. Suppose L is a functional which satisfies assumptions

Al-A5. If [Xi: 1 < i < w) are independent and uniformly distributed

in [0,1] d , then there is a constant 0 < P < o so that for all

c>O

Enl P(IL(Xl.,X2.''''Xn )/n (d-l )/dP~ I -  :) < .

There are many functionals which arise in the theory of algorithms

and which satisfy AI-A5. The easiest examples are those associated

* with the Steiner tree problem and the rectilinear Steiner tree problem,

but in essentially any geometric problem which deals with minimized

lengths one can find natural functionals which meet the conditions of

Theorem 2.
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As a final point one should note that both Beardwood, Halton, and
t

Hammersley (1959) as well as Steele (1979) contain results valid for

random variables with non-uniform distribution. The approximation

processes used in these papers to extend the uniform case can again be

applied here although to do so would require considerable space. Since

the algorithmic applications and the program begun by B. W. Weide (1978)

are ably served by Theorems 1 and 2, these last extentions have been

omitted.

i
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